Introduction to antibiotic therapy

Angharad Davies

Professor/Honorary Consultant Microbiologist
Physician Associate Induction 2021

Overview of session

How do antibiotics work?
Factors in choosing an antibiotic
Some important antibiotic groups

A few words on Clostridioides difficile

What antibiotics do you know?

How do antibiotics work?

Remember bacteria are prokaryotes and we are eukaryotes – lucky! – magic bullet concept

Commonest targets in bacteria:

- cell wall (peptidoglycan) synthesis
 - eg penicillin/beta-lactams
- protein synthesis
 - eg gentamicin
- DNA/RNA
 - eg ciprofloxacin
- folate synthesis
 - eg trimethoprim

Choosing an antibiotic

- What is the likely source of infection? (clinical assessment)
- 2. What organisms are likely to cause infection in that source?

(basic knowledge of microbiology)

 What antibiotics do those organisms respond to? -In general choose narrow spectrum agent where possible

(understanding of antibiotic spectra)

Antibiotic spectra

- Broad vs narrow
 - Always use narrowest spectrum antibiotic possible to reserve broad spectrum antibiotics for when really needed
- For example:
- Gram-positive organisms?
- Gram-negative organisms?
- Anaerobes?

Choosing an antibiotic

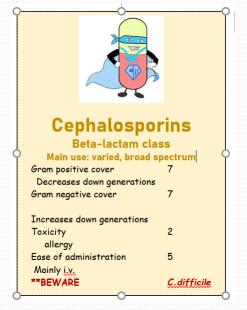
Choosing an antibiotic

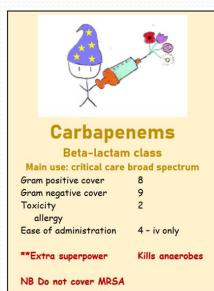
- Penetration into site of infection
 - e.g. central nervous system/bone
- Side-effects e.g. antibiotic—associated diarrhoea/ C. difficile
- allergies
- Interactions
- intravenous vs oral
 - Some achieve blood/tissue concentrations orally equivalent to intravenous
- Pregnancy/lactation
- Guidelines/local policies
- Cost

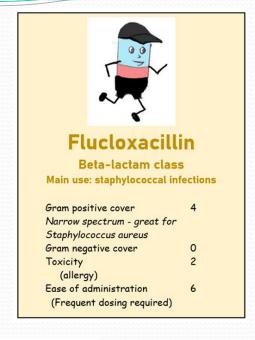
Downsides of antibiotic treatment

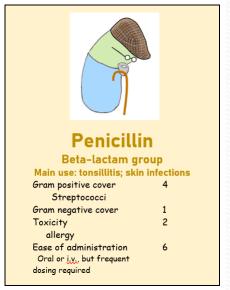
- Toxicity ('side-effects')
- Allergy mild rash to life-threatening anaphylaxis
- Clostridioides difficile
- Development of RESISTANCE

Some important antibiotic classes


	Class	Examples	Target
	Beta-lactams	Penicillin, flucloxacillin, cephalosporins, meropenem	Cell wall synthesis
	Tetracyclines	Tetracycline, doxycycline	ribosome
	Glycopeptides	Vancomycin	Cell wall synthesis
	Macrolides	Erythromycin, clarithromycin	ribosome
	Quinolones	ciprofloxacin	DNA gyrase
<	aminoglycosides	gentamicin	ribosome
	trimethoprim	Trimethoprim	Folate synthesis


A closer look at 2 important antibiotic classes


- Beta-lactams
- Aminoglycosides


Beta-lactams

- Penicillins
- Cephalosporins
- Carbapenems

Beta-lactam ring

Beta-lactams: penicillins

- Penicillin
 - Narrow spectrum streptococci
- Flucloxacillin
 - Narrow spectrum Staphylococcus aureus
- Ampicillin/amoxycillin
 - Broader spectrum penicillin

Flucloxacillin

- Methicillin was the first penicillin developed through rational drug modification
- In the UK we use flucloxacillin

- Narrow spectrum
- Developed specifically to treat Staphylococcus aureus

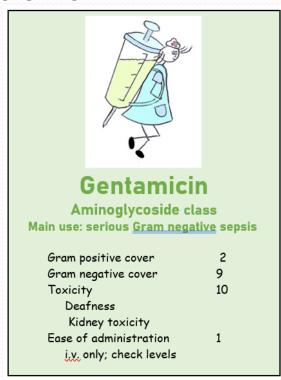
Beta lactams: cephalosporins

- Discovered from Cephalosporium mould from Sardinian sewage 1945
- Widely introduced in 1980's
- Broad spectrum, G+ and G-
- Reputation for causing *C. difficile* disease

Beta-lactams: carbapenems

- Imipenem, meropenem
- Very broad spectrum
- G+ and G-
- Critical care 'big guns'
- ICUs/bone marrow transplant/chemotherapy units now very reliant on them

Aminoglycosides


Example: gentamicin

• Discovered in 1963 – product of

Micromonospora sp.

 On WHO list of essential medicines

inexpensive

Aminoglycosides continued

- Spectrum: usually used for Gram-negatives
- Toxicity: kidneys and inner ear hair cells (nephrotoxic and ototoxic)
- Nonetheless being used increasingly again because of rising antimicrobial resistance and less propensity to cause C. difficile (?)
- Need to measure blood levels to avoid toxicity
- once daily dosing is usually preferred

Clostridioides difficile

- Use of broad spectrum antibiotics kills normal flora and allows C. difficile to proliferate in gut
- Spores spread in the hospital environment
- Government targets
- Ward cleaning is important as well as handwashing and disinfecting equipment
- Antibiotic stewardship
 - avoid unnecessary antibiotics
 - avoid prolonged courses of antibiotics
 - Use hospital antibiotic policies

Clostridioides difficile infection

- Infectious diarrhoea caused by the gut bacterium Clostridioides difficile
 - Symptoms range from mild diarrhoea to severe lifethreatening inflammation of the colon
- Often provoked by antibiotic therapy
 - Any antibiotic may increase risk
 - Risks additive with multiple antibiotics
 - Risk increases with course length
 - ?Risk may vary between agents

Clinical aspects of C. difficile

- Diarrhoea is caused by a toxin
- May lead to toxic megacolon/pseudomembranous colitis and bowel perforation
- Treatment:
 - Stop other antibiotics
 if possible
 Treat with specific antibiotics
 (oral vancomycin)

https://en.m.wikipedia.org/wiki/Clostridioides difficile infection

Decreasing antibiotic use has also been shown to result in lower incidence of *C. difficile* infections.

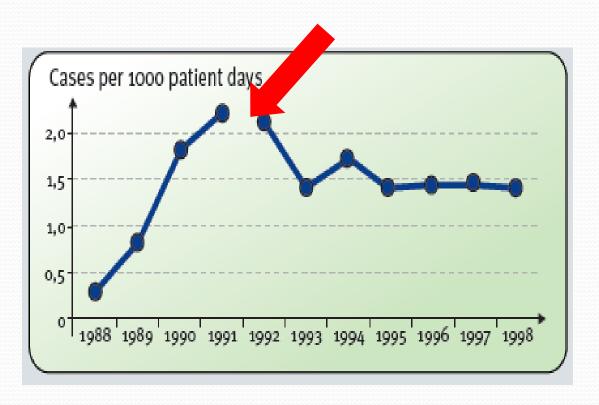


Figure 7: Rates of nosocomial *C. difficile*, expressed per 1,000 patient-days, before and after implementation of the antibiotic management program.

